Séminaire Statistique
organisé par l'équipe Statistique
-
Julien Gibaud
Identifiability of stochastic state-space models
16 janvier 2026 - 11:00Salle de séminaires IRMA
State-Space Models (SSMs) are deterministic or stochastic dynamical systems defined by two processes. The state process, which is not observed directly, models the transformation of the system states over time, while the observation process produces the observables on which model fitting and prediction are based. Ecology frequently uses stochastic SSMs to represent the imperfectly observed dynamics of population sizes or animal movement. However, several simulation-based evaluations of model performance suggest broad identifiability issues in ecological SSMs. Formal SSM identifiability is typically investigated using exhaustive summaries, which are simplified representations of the model. The theory on exhaustive summaries is largely based on continuous-time deterministic modelling and those for discrete-time stochastic SSMs have developed by analogy. While the discreteness of time does not constitute a challenge, finding a good exhaustive summary for a stochastic SSM is more difficult. The strategy adopted so far has been to create exhaustive summaries based on a transfer function of the expectations of the stochastic process. However, this evaluation of identifiability does not allow to take into account the possible dependency between the variance parameters and the process parameters. We show that the output spectral density plays a key role in stochastic SSM identifiability assessment. This allows us to define a new suitable exhaustive summary. Using several ecological examples, we show that usual ecological models are often theoretically identifiable, suggesting that most SSM estimation problems are due to practical rather than theoretical identifiability issues. -
Marina Gomtsyan
Variable selection methods in sparse GLARMA models
23 janvier 2026 - 11:00Salle de séminaires IRMA
We propose novel variable selection methods for sparse GLARMA (Generalised Linear Autoregressive Moving Average) models, which can be used for modelling discrete-valued time series. These models allow us to introduce some dependence in a Generalised Linear Model (GLM). The key idea behind our estimation procedure is first to estimate the coefficients of the ARMA part of the GLARMA model and then use a regularised approach, namely the Lasso, to estimate the regression coefficients of the GLM part of the model. Furthermore, we establish a sign-consistency result for the estimator of the regression coefficients in a sparse Poisson model without time dependence. The performance of our proposed methods was assessed on simulation studies in different frameworks and on several datasets in the field of molecular biology. Our approaches exhibit very good statistical performance, surpassing other methods in identifying non-null regression coefficients. Secondly, their low computational burden enables their application to relatively large datasets. Our proposed methods are implemented in R packages, which are publicly available on the Comprehensive R Archive Network (CRAN). -
Jean-Armel Bra Kouadio
Modèles autorégressifs modulés par une chaîne de Markov cachée avec innovations dépendantes
6 février 2026 - 11:00Salle de séminaires IRMA
Ces travaux portent sur l’estimation et l'inférence statistique des modèles de séries temporelles ARHMC (Autoregressive Hidden Markov Chain) à changements de régimes markoviens avec innovations dépendantes (i.e ARHMC(p) faibles). Nous avons développé des procédures d’estimation par la méthode des moments. Puis, nous avons établi les principales propriétés asymptotiques des estimateurs proposés. Nous avons également accordé une attention particulière à l'estimation de la matrice variance asymptotique de type sandwich. Pour le modèle ARHMC}(0) faible, nous construisons des tests portmanteau adaptés aux innovations dépendantes, permettant de tester l’adéquation du modèle et de sélectionner le nombre de régimes. Nous abordons également la prévision et le décodage de la chaîne cachée.