Séminaire Statistique
organisé par l'équipe Statistique
-
Roberto Molinari Molinaro
Fiducial Matching: Differentially Private Inference for Categorical Data
13 juin 2025 - 11:00Salle de séminaires IRMA
The task of statistical inference, which includes building confidence intervals and tests for parameters and effects of interest to a researcher, is still an open area of investigation in a differentially private (DP) setting. Indeed, in addition to the randomness due to data sampling, DP delivers another source of randomness consisting in the noise added to protect an individual’s data from being disclosed to a potential attacker. As a result of this convolution of noises, in many cases it is too complicated to determine the stochastic behavior of the statistics and parameters resulting from a DP procedure. In this work we contribute to this line of investigation by employing a simulation-based matching approach, solved through tools from the fiducial framework, which aims to replicate the data generation pipeline (including the DP step) and retrieve an approximate distribution of the estimates resulting from this pipeline. For this purpose we focus on the analysis of categorical (nominal) data that is common in national surveys, for which sensitivity is naturally defined, and on additive privacy mechanisms. We prove the validity of the proposed approach in terms of coverage and highlight its good computational and statistical performance for different inferential tasks in simulated and applied data settings.