S'abonner à l'agenda
  • Livia Grammatica

    Tate-linear formal varieties

    15 janvier 2026 - 14:00Salle de séminaires IRMA

    We work over a closed field of positive characteristic. A classic result of Serre-Tate says that the deformation space of an ordinary abelian variety has the structure of a formal torus, and one can consider the closed subvarieties which are given by formal subtori. Tate-linear formal varieties play the role of formal subtori in the deformation space of abelian varieties of arbitrary Newton polygon. Recent work of Chai-Oort established an important link between Tate-linear subvarieties and the Hecke orbit conjecture for \mathcal{A}_g, which then led to a full solution for Shimura varieties of Hodge type by D'Addezio and van Hoften. We will explain the role of Tate-linear varieties in the Hecke orbit conjecture, their conjectural link with special subvarieties of \mathcal{A}_g, and show how p-adic monodromy techniques can help shed light on their structure.